TweetFollow Us on Twitter

RISC on Mac II
Volume Number:6
Issue Number:9
Column Tag:Programmer's Forum

The Mac II On Steroids

By Paul Zarchan, Cambridge, MA

The Mainframe Potential Of The Mac

Introduction and Background

The 68000-based Macintosh was introduced in 1984 and it’s processing power remained virtually unchanged for approximately 3 years. A dramatic speed increase came with the introduction of the 68020-based Mac II in 1987. Ordinary applications such as word processing ran 4 times faster on the Mac II because of it’s higher clock rate (16 Mhz vs 8 Mhz) and increased number of bits (32 bits vs 16 bits) while numerically intensive programs ran 10 times faster because of the addition of the 68881 math coprocessor. In fact, for number crunching programs written in FORTRAN, a $5,000 Mac II ran nearly at the speed of a VAX 11/780 - a minicomputer costing $250,000. 1

Since 1987 there has not been a dramatic improvement in Macintosh running speeds. The introduction of the 68030-based Macintosh only slightly increased the speed of the 68020-based Mac II whereas higher clock rates have gradually accelerated speeds of the original Mac II by up to a factor of 3. Although a factor of 3 is not insignificant, it is not commensurate with the expectations of the microcomputer user community nor is it adequate for many mainframe-based scientific and engineering applications.

What’s New?

Much has been written about “the wall” facing all microcomputers. Physics appears to place an upper limit of 100 to 150 Mhz on achievable clock rates with silicon. Does that mean the best we can see in the future for the Mac is a mere threefold increase in speed? Fortunately the answer is no! For scientific and engineering applications written in FORTRAN, the Mac II can be made up to 30 times faster - not in the near future but right now! In other words, the Mac II can be given the number crunching capability of a mainframe.

A special board, based on Motorola’s new 88000 RISC architecture is available from Tektronix, and a 88000 FORTRAN compiler is available from Absoft giving the Macintosh II a mainframe speed capability. The board, known as the RP88 Coprocessor Board, can be installed in approximately 2 minutes into a NuBus slot and the FORTRAN compiler works in the MPW environment. Calculation intensive programs are written and compiled in the 68020 Macintosh environment but executed (by double-clicking an icon on the screen) on the 88000. Data generated by the 88000-based program can be viewed on the screen and/or data can be written to a file for viewing later. More advanced users can actually have portions of a program such as the Macintosh interface running on the 68020 and sophisticated algorithms running on the 88000.

Although RISC boards have been around for some time on a variety of hardware platforms, the Tektronix contribution is different in two important respects. First the extraordinary power of RISC can now easily be exploited from a high order language by engineers and scientists for “plain vanilla” code. C and FORTRAN compilers for the 88000 can not only be ordered but they are actually available. Secondly, we still have all the advantages that the Macintosh has to offer. In fact, when operating under MultiFinder it is possible, without additional programming, to have an 88000-based program running simultaneously with a 68020-based application, without loss of speed in either application.

What Is RISC?2,3

RISC is an acronym for “reduced instruction set computer.” It is a style of computer architecture that advocates shifting complexity from hardware and program run time to software and program compile time. At the heart of RISC are two important concepts:

• Most instructions are effectively executed in a single machine cycle

• Only those features that measurably affect performance are implemented in hardware

Apparently the first RISC machine was the IBM/801 minicomputer built in 1979. This computer, which was not a commercial product, had very fast memory and fixed format instructions that could execute in a single clock cycle. The IBM RT PC workstation was a commercial product introduced in 1986 based on the 801 technology. However the original RT was a failure commercially. One of the possible reasons for it’s lack of success was the absence of high level language support.

Today one only has to read the ads of scientific/engineering magazines to see that there are many RISC products in the microcomputer/workstation world. In this article we shall not attempt to compare one product versus another but merely show that the RISC product available for the Mac II yields an astounding leap in performance.

How Fast Is The 88000-Based Mac?

The whetstone benchmark, devised in England by H. Curnow and B. Wichmann in the Feb. 1976 issue of Computer Journal,4 is an attempt to cover a typical mix of all floating-point operations. This benchmark contains linear arrays, and addition, subtraction, multiplication, division, and transcendental operations. Many computer manufacturers have rated their machines in terms of thousands of whetstones per second or kwhet/s. Higher whetstone ratings mean more powerful machines. Table 1, based on the results of Reference 5, presents single precision and double precision whetstone ratings for several computing platforms including the 88000-based Mac II. In addition, the cost of the host computer is included in the Table to provide a sobering perspective. Here we can consider cost to be the platform purchase price only. This neglects the cost of the many individuals required to operate and maintain the larger machines. In fact, the cost of this small army of technicians usually far exceeds the machines purchase price!

Table 1 Whetstone Ratings For A Variety Of Computers

We can see from Table 1 that although the original Mac II is very fast, the addition of the 88000 RISC board speeds up the Mac II by a factor of 23 for single precision whetstones and a factor of 13 for double precision whetstones when the default compiler optimization is used. Much higher whetstone ratings for the 88000-based Mac can be achieved by using additional compiler optimization options. However these higher whetstone ratings (approximately a factor of 2 higher) are not indicative of general performance gains in a variety of applications.

Generally higher cost computers yield faster performance. However, Table 1 shows that cost is not always commensurate with the performance. For example, a VAX 11/780 is only 1.5 times as fast as a Macintosh II (double precision whetstones) and yet is 50 times more expensive. An IBM/3090 is 33 times faster than a Macintosh II and is 1000 times more expensive.

A 20 Mhz 88000 Tektronix board with 8 Megabytes of memory costs $12,000 (less expensive versions are available too) and the Absoft 88000 FORTRAN compiler costs $2000. Therefore the total cost of an 88000-based Mac is approximately $19000 ($12000+$2000+$5000). The Table indicates that the 88000-based Mac runs 2.4 times slower than the IBM 3090 super computer at 260 times less cost when the default compiler optimization is used. Although the 88000-based Mac is nearly 4 times more expensive than a conventional Mac II it is from 13 to 23 times more powerful!

If we normalize the computer performance information of Table 1 as measured by whetstones per second to the computer purchase price, we can generate “bang for the buck” information as was done in Ref. 5. More bang for the buck means that the computer yields a higher whetstone rating for less cost. Figure 1 presents this cost effectiveness information for single and double precision whetstones. The figure clearly shows that the 88000-based Mac (when the default compiler optimization is used) is more than two orders of magnitude cost effective than super mini or mainframe computers and from 3 to 6 times more cost effective than a conventional Mac II. Most importantly, mainframe power is now available in a desktop microcomputer at very reasonable cost!

Figure 1 RISC Significantly Improves Cost Effectiveness of Mac II

How Fast Is The 88000-Based Mac On Actual Programs?

Whetstone benchmarks are meaningless unless they reflect how the computer will perform on actual programs. If a computer has a whetstone rating 20 times higher than that of another computing platform, the expectation is that normal (as written by non-computer professionals) FORTRAN programs will run 20 times faster on the more powerful computer. In the case of the 88000-based Mac we shall see that the whetstone rating is actually an underestimate of how powerful this enhanced microcomputer actually is.

A monte carlo program, whose source code is presented in Listing 1, was taken from Reference 6. This program simulates a missile-target engagement and involves the numerical integration of differential equations and a random input error source. Fifty run monte carlo set sample sizes are required to accumulate accurate statistics on performance as a function of flight time. Data from each monte carlo set (corresponding to a particular flight time) is post-processed and the mean and standard deviation of each set is computed and written to a file. A glance at Listing 1 also shows how uniformly distributed random numbers are generated and how computer running time is calculated with the Absoft 88000 FORTRAN compiler

__________________________________________________________
 DIMENSION Z(1000)
 INTEGER RUN
 INTEGER*4 m(4),random
 CALL times(m)
 ntim=m(1)
 OPEN(1,STATUS=’NEW’,FILE=’DATFIL’)
 VC=4000.
 XNT=96.6
 VM=3000.
 XNP=3.
 TAU=1.
 RUN=50
 106  CONTINUE
 DO 60 TF=1,10
 Z1=0.
 DO 20 I=1,RUN
 K=random()
 SUM=K/2.1475e9
 TSTART=TF*SUM
 K1=random()
 PZ=K1/2.1475e9
 PZ=PZ-.5
 IF(PZ.GT.0.)THEN
 COEF=1.
 ELSE
 COEF=-1.
 ENDIF
 Y=0.
 YD=0.
 T=0.
 H=.01
 S=0.
 XNC=0.
 XNL=0.
 10IF(T.GT.(TF-.0001))GOTO 999
 IF(T.LT.TSTART)THEN
 XNT=0.
 ELSE
 XNT=COEF*96.6
 ENDIF
 YOLD=Y
 YDOLD=YD
 XNLOLD=XNL
 STEP=1
 GOTO 200
 66STEP=2
 Y=Y+H*YD
 YD=YD+H*YDD
 XNL=XNL+H*XNLD
 T=T+H
 GOTO 200
 55CONTINUE
 Y=.5*(YOLD+Y+H*YD)
 YD=.5*(YDOLD+YD+H*YDD)
 XNL=.5*(XNLOLD+XNL+H*XNLD)
 S=S+H
 GOTO 10
 200  CONTINUE
 TGO=TF-T+.00001
 RTM=VC*TGO
 XLAMD=(RTM*YD+Y*VC)/(RTM**2)
 XNC=XNP*VC*XLAMD
 XNLD=(XNC-XNL)/TAU
 YDD=XNT-XNL
 IF(STEP-1)66,66,55
 999  CONTINUE
 Z(I)=Y
 Z1=Z(I)+Z1
 XMEAN=Z1/I
 20CONTINUE
 SIGMA=0.
 Z1=0.
 DO 50 I=1,RUN
 Z1=(Z(I)-XMEAN)**2+Z1
 IF(I.EQ.1)THEN
 SIGMA=0.
 ELSE
 SIGMA=SQRT(Z1/(I-1))
 ENDIF
 50CONTINUE
 WRITE(9,*)TF,SIGMA,XMEAN
 WRITE(1,*)TF,’,’,SIGMA,’,’,XMEAN
 60CONTINUE
 CLOSE(1)
 CALL times(m)
 ztim=(m(1)-ntim)/60.
 WRITE(9,*)ztim
 PAUSE
 END
_____________________________________________________________

Listing 1 Monte Carlo Program FORTRAN Source Code

Table 2 compares the compile and running time using Absoft Version 2.3 FORTRAN for the Mac II and Absoft 88000 FORTRAN for the 88000-based Mac (using the default compiler optimization). In this table compile actually means compile, assemble and link. In other words it is the time the user must wait after making a source code change to get an executable program. We can see that for this example the 88000-based Mac run time was 26 times faster than the Mac II. However the compile times for the 88000 compiler are much higher. Apparently the price paid for dramatic increases in run time speed using RISC is a significant increase for the source code to compile.

Table 2 - RISC Yields Faster Run Times At Expense of Longer Compile Times

In general I have found that my applications, using single precision arithmetic, run from 20 to 30 times faster with the RISC board while my double precision applications run from 10 to 20 times faster. The major annoyance with the 88000-based Mac is in the much slower compile times with the 88000 FORTRAN (I was spoiled by Absoft’s very fast compiler for the Mac II). Applications which consist of a few hundred lines of code take from 1 min to 4 min to generate executable code whereas applications of more than 1000 lines take from 5 min to 15 min to compile, assemble and link. Making separate files for each program subroutine seems to speed up compilation on subsequent recompiles. However, the method that seems to work best for me is to develop the program under 68020 Absoft FORTRAN Version 2.3 and then to recompile under Absoft 88000 FORTRAN.

Is It Necessary To Learn MPW?

Although the 88000 board is easy to install and the ensuing performance gains breathtaking, the documentation leaves something to be desired. The initial documentation release had no FORTRAN examples and did not even tell you how to compile and execute a simple program. Some of the information provided was even scary. For example, the instructions for installing FORTRAN are: “The files listed above have been given to you on a tar formatted tape...” After searching frantically for the tape and drive I decided to call Textronic for help. Fortunately they were pleasant and very helpful. In case future documentation releases are not more explicit, here is a step-by-step procedure for compiling and executing a program for the 88000.

The 88000 FORTRAN compiler runs in the MPW environment. After the souse code is written using the MPW editor and named program.f (in this example whet.f), one pulls down the “Build” menu and clicks on “Create RP88 ...” as shown in Fig. 2.

Figure 2 - Step 1 In Using The 88000 FORTRAN Compiler

Next the user types in the name of the program output (i.e. double clickable icon) and clicks on the “files” button as shown in Fig. 3.

Figure 3 - Step 2 In Using The 88000 FORTRAN Compiler

A list of files will appear as shown in Fig. 4. The user double-clicks on the files of interest. After all the files are selected, the user clicks on done.

Figure 4 - Step 3 In Using The 88000 FORTRAN Compiler

In step 4 the user clicks on the “CreateMake88” button.

Figure 5 - Step 4 In Using The 88000 FORTRAN Compiler

Finally the user pulls down the “Build” menu for the last time and clicks on “Build...”

Figure 6 - Step 5 In Using The 88000 FORTRAN Compiler

A dialog box comes up and the user types in the program name (if it does not already appear) and then clicks on “OK”.

Figure 7 - Step 6 In Using The 88000 FORTRAN Compiler

If there is a compilation error, the MPW worksheet will indicate the error and line number. Selecting the line and hitting the “enter” key will automatically take you to the offending line in the source code. If there are no errors, the MPW worksheet eventually indicates that the whole process is completed. At this time the user types in host88, a space and then the name of the program (in this case “host88 whet”) and hits the “enter” key. This command automatically launches the 88000-based program.

General Comments

I have used the RP88 and FORTRAN 88000 compiler for approximately 3 months. The product allows me to tackle problems which were previously beyond my reach. I would highly recommend this product to any scientist or engineer who must do time consuming number crunching problems or to any individual currently wasting money on excessive mainframe charges. When I first told a colleague about this product he actually thought nitrogen bottles and super conductivity were involved in achieving mainframe speeds with a microcomputer.

At work, skeptics became convinced of the utility of this product when we ported a mainframe covariance analysis program, using double precision arithmetic. The program took 6 hrs to run on a Mac II. Only one line of code had to be modified to work with the 88000 FORTRAN compiler. In the first attempt, the program ran in 20 min with the 88000. We saw that the 88000 bottle neck was excessive writing to the screen (this was originally done on the 68020 version of the code just to let the user know that the program was alive). In writing to the screen, the 88000 must communicate with the 68020 causing the 88000 to spend a great deal of time waiting. By writing the data to a file (for viewing later) and eliminating writing to the screen when using the 88000 compiler we cut the run time down to 10 min. In addition, with MultiFinder we can make batch runs in the background while using the 68020 portion of the Mac for other productive work.

Current pricing information on the Tektronix RP88 can be obtained from Tektronix, PO Box 500, MS 50-662, Beaverton, Oregon 97077 (800-TEK-WIDE ext. 8800). Information on the Absoft 88000 FORTRAN compiler can be obtained from Absoft, 2781 Bond Street, Rochester Hills, MI 483089 (313-853-0095).

References

1 Zarchan, P., “New Mac Workstation Potential,” MacTutor, Vol. 3, March 1987, pp 15-21.

2 Hennessy, J., “VLSI RISC Processors,” VLSI Systems Design, Oct. 1985, pp 22-32.

3 Robinson, P., “How Much of a RISC,” BYTE, Vol. 12, April 1987, pp. 143-150.

4 Curnow, H. J., and Wichmann, B. A., “Synthetic Benchmark,” Computer Journal, Vol. 19, Feb. 1976, pp 43-49.

5 Zarchan, P., “Benchmarks Re-Visited,” MacTutor, Vol. 3, Sept. 1987, pp. 78-80.

6 Zarchan P., Tactical and Strategic Missile Guidance, Vol. 124, Progress in Astronautics and Aeronautics, AIAA, Washington, DC 1990.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

The Legend of Heroes: Trails of Cold Ste...
I adore game series that have connecting lore and stories, which of course means the Legend of Heroes is very dear to me, Trails lore has been building for two decades. Excitedly, the next stage is upon us as Userjoy has announced the upcoming... | Read more »
Go from lowly lizard to wicked Wyvern in...
Do you like questing, and do you like dragons? If not then boy is this not the announcement for you, as Loongcheer Game has unveiled Quest Dragon: Idle Mobile Game. Yes, it is amazing Square Enix hasn’t sued them for copyright infringement, but... | Read more »
Aether Gazer unveils Chapter 16 of its m...
After a bit of maintenance, Aether Gazer has released Chapter 16 of its main storyline, titled Night Parade of the Beasts. This big update brings a new character, a special outfit, some special limited-time events, and, of course, an engaging... | Read more »
Challenge those pesky wyverns to a dance...
After recently having you do battle against your foes by wildly flailing Hello Kitty and friends at them, GungHo Online has whipped out another surprising collaboration for Puzzle & Dragons. It is now time to beat your opponents by cha-cha... | Read more »
Pack a magnifying glass and practice you...
Somehow it has already been a year since Torchlight: Infinite launched, and XD Games is celebrating by blending in what sounds like a truly fantastic new update. Fans of Cthulhu rejoice, as Whispering Mist brings some horror elements, and tests... | Read more »
Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »
PUBG Mobile teams up with global phenome...
Since launching in 2019, SpyxFamily has exploded to damn near catastrophic popularity, so it was only a matter of time before a mobile game snapped up a collaboration. Enter PUBG Mobile. Until May 12th, players will be able to collect a host of... | Read more »

Price Scanner via MacPrices.net

Apple is offering significant discounts on 16...
Apple has a full line of 16″ M3 Pro and M3 Max MacBook Pros available, Certified Refurbished, starting at $2119 and ranging up to $600 off MSRP. Each model features a new outer case, shipping is free... Read more
Apple HomePods on sale for $30-$50 off MSRP t...
Best Buy is offering a $30-$50 discount on Apple HomePods this weekend on their online store. The HomePod mini is on sale for $69.99, $30 off MSRP, while Best Buy has the full-size HomePod on sale... Read more
Limited-time sale: 13-inch M3 MacBook Airs fo...
Amazon has the base 13″ M3 MacBook Air (8GB/256GB) in stock and on sale for a limited time for $989 shipped. That’s $110 off MSRP, and it’s the lowest price we’ve seen so far for an M3-powered... Read more
13-inch M2 MacBook Airs in stock today at App...
Apple has 13″ M2 MacBook Airs available for only $849 today in their Certified Refurbished store. These are the cheapest M2-powered MacBooks for sale at Apple. Apple’s one-year warranty is included,... Read more
New today at Apple: Series 9 Watches availabl...
Apple is now offering Certified Refurbished Apple Watch Series 9 models on their online store for up to $80 off MSRP, starting at $339. Each Watch includes Apple’s standard one-year warranty, a new... Read more
The latest Apple iPhone deals from wireless c...
We’ve updated our iPhone Price Tracker with the latest carrier deals on Apple’s iPhone 15 family of smartphones as well as previous models including the iPhone 14, 13, 12, 11, and SE. Use our price... Read more
Boost Mobile will sell you an iPhone 11 for $...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering an iPhone 11 for $149.99 when purchased with their $40 Unlimited service plan (12GB of premium data). No trade-in is required... Read more
Free iPhone 15 plus Unlimited service for $60...
Boost Infinite, part of MVNO Boost Mobile using AT&T and T-Mobile’s networks, is offering a free 128GB iPhone 15 for $60 per month including their Unlimited service plan (30GB of premium data).... Read more
$300 off any new iPhone with service at Red P...
Red Pocket Mobile has new Apple iPhones on sale for $300 off MSRP when you switch and open up a new line of service. Red Pocket Mobile is a nationwide MVNO using all the major wireless carrier... Read more
Clearance 13-inch M1 MacBook Airs available a...
Apple has clearance 13″ M1 MacBook Airs, Certified Refurbished, available for $759 for 8-Core CPU/7-Core GPU/256GB models and $929 for 8-Core CPU/8-Core GPU/512GB models. Apple’s one-year warranty is... Read more

Jobs Board

DMR Technician - *Apple* /iOS Systems - Haml...
…relevant point-of-need technology self-help aids are available as appropriate. ** Apple Systems Administration** **:** Develops solutions for supporting, deploying, Read more
Operating Room Assistant - *Apple* Hill Sur...
Operating Room Assistant - Apple Hill Surgical Center - Day Location: WellSpan Health, York, PA Schedule: Full Time Sign-On Bonus Eligible Remote/Hybrid Regular Read more
Solutions Engineer - *Apple* - SHI (United...
**Job Summary** An Apple Solution Engineer's primary role is tosupport SHI customers in their efforts to select, deploy, and manage Apple operating systems and Read more
DMR Technician - *Apple* /iOS Systems - Haml...
…relevant point-of-need technology self-help aids are available as appropriate. ** Apple Systems Administration** **:** Develops solutions for supporting, deploying, Read more
Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.