TweetFollow Us on Twitter

Apr 99 Challenge

Volume Number: 15 (1999)
Issue Number: 4
Column Tag: Programmer's Challenge

Apr 99 Challenge

by Bob Boonstra, Westford, MA

Shortest Network

This month's problem was suggested by Michael Kennedy, who wins two Challenge points for making the suggestion. The problem is to find the shortest network of line segments interconnecting a specified set of points. Shortest network algorithms have obvious practical application in constructing transportation and communications networks. In a January 1989, Scientific American article, Marshall Bern and Ronald Graham discussed the shortest network "Steiner" problem as one of a class of NP-hard problems. While no polynomial-time algorithm is known, the article (which, unfortunately, I have not been able to find online) discusses practical algorithms that produce networks slightly longer than the optimal one. Your Challenge for this month is to produce a near-optimal network in minimum time. Fortunately, we have been granted unlimited power of eminent domain, so there are no restrictions on where intermediate nodes may be placed or where connections may be routed.

The prototype for the code you should write is:

#if defined(__cplusplus)
extern "C" {
#endif

typedef struct Node {   /* node coordinates */
   double x;
   double y;
} Node;

typedef struct Connection {
         /* connection between Node[index1] and Node[index2] */
   long index1;
   long index2;
} Connection;

long /* numConnections */ ShortestNetwork(
   long numInitialNodes,         /* number of nodes to connect */
   long *numIntermediateNodes,   /* number of nodes added by ShortestNetwork */
   Node nodes[], 
      /* Nodes 0..numInitialNodes-1 are initialized on entry. */
      /* Nodes numInitialNodes..numInitialNodes+*numIntermediateNodes 
                  are added by ShortestNetwork */
   Connection connections[],   /* connections between nodes */
   long maxNodes,        /* number of entries allocated for nodes */
   long maxConnections   /* number of entries allocated for connections */
);

#if defined(__cplusplus)
}
#endif

Your ShortestNetwork routine will be given a list of numInitialNodes nodes to connect. You may add intermediate nodes to help you form a shorter network, and must produce as output a list of connections between pairs of nodes. The connections must provide a path between any pair of the initial nodes.

Your solution must return the number of intermediate nodes added to the network in *numIntermediateNodes, while storing the location of those nodes in nodes[numInitialNodes+k], k=0..*numIntermediateNodes-1. A connection is specified by storing the indices of the two nodes being connected into the connection array. Your ShortestNetwork routine should return the number of connections created.

The maxNodes and maxConnections parameters indicate how much storage has been allocated for nodes and connections. It is my intention to allocate enough storage for all the nodes and connections your solution might create, but if it turns out that there is not enough storage, your solution should return a value of -1 to indicate that storage was exhausted.

The winner will be the solution that generates the shortest network in the minimum amount of time. Specifically, your solution will be assigned a cost equal to the sum of the distances between nodes in your list of connections, plus a penalty of 10% for each second of execution time. Solutions that do not connect all of the initial nodes will be penalized with a very large cost. The solution with the lowest total cost over a series of networking problems will be the winner.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal. Thanks to Michael for suggesting this Challenge.

Three Months Ago Winner

Congratulations to Tom Saxton for submitting the winning solution to the January Sphere Packing Challenge. You may recall that this Challenge was to pack a set of spheres of varying size into a box with minimum volume, and to do so in the shortest amount of time possible. Tom submitted one of only two solutions received for this Challenge, and his was the only one that performed correctly.

Tom's approach is to decide on a footprint for the box to contain the spheres, "drop" the spheres individually into the box until they hit another sphere or the bottom of the box, while attempting to move the dropped sphere around the obstacle without going outside the box footprint. The solution then iterates with random movements to try to converge to a better solution. Tom observed in his submission that the time penalty for this problem (1% per millisecond of execution time) was very severe, making it unproductive to let his algorithm iterate very long. Every tenth of a second of execution time requires a factor of 2 reduction in volume to be productive, a rate of improvement smaller than what Tom was able to achieve.

I evaluated the solutions using six test cases with between 200 and 2000 spheres per test case. As one might expect, execution time grew exponentially with the number of spheres. A test case with 1000 spheres took about 20 times as long to solve as a 200-sphere case, and a 2000-sphere case took about 4 times longer than the 1000-sphere case. Tom's solution generated solutions that, in aggregate, occupied between 1.3 and 3.9 times the volume of individual cubes containing the individual spheres, which suggests that better solutions could be achieved with a more relaxed time penalty.

The table below lists, for each of the solutions submitted, the total volume of the boxes containing the spheres, the total execution time, and the total score including the time penalty, as well as the code and data sizes for each entry. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

Name Volume (x1.0E12) Time (secs) Score (x1.0e12) Code Size Data Size
Tom Saxton (79)65.3142.310107.25796372
A. D.***820104

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 200
  2. Saxton, Tom 99
  3. Boring, Randy 56
  4. Mallett, Jeff 50
  5. Rieken, Willeke 47
  6. Maurer, Sebastian 40
  7. Heithcock, JG 37
  8. Cooper, Greg 34
  9. Murphy, ACC 34
  10. Lewis, Peter 31
  11. Nicolle, Ludovic 27
  12. Brown, Pat 20
  13. Day, Mark 20
  14. Higgins, Charles 20
  15. Hostetter, Mat 20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place20 points
2nd place10 points
3rd place7 points
4th place4 points
5th place2 points
finding bug2 points
suggesting Challenge2 points

Here is Tom's winning Sphere Packing solution:

Spheres.cpp
Copyright © 1999 Tom Saxton

#include "Spheres.h"
#include "VecUtil.h"

#include <math.h>
#include <stdlib.h>

enum {
   fFalse = 0,
   fTrue = 1
};

typedef unsigned long ulong;

// disable asserts
#define Assert(f)

// hard iteration limit
#define cIterLim   10000

// scoring an accepting solutions
#define _FAccept(volNew, volBest) ((volNew) < (volBest))
#define _Score(vol, dtick)      ((vol) * (1.0 + (dtick)*10.0/60.0))

// define this to ignore the time penalty
// #define KEEP_GOING

// time checking parameters
#define dtickSec         60
#define dtickCheckScore      (dtickSec/30)
#define dtickFirstCheck      (dtickSec/30)
#define dtickLastCheck      (10*dtickSec)

static const Position s_normalX = { 1.0, 0.0, 0.0 };
static const Position s_normalY = { 0.0, 1.0, 0.0 };
static const Position s_normalZ = { 0.0, 0.0, 1.0 };
static const Position s_normalXNeg = { -1.0, 0.0, 0.0 };
static const Position s_normalYNeg = { 0.0, -1.0, 0.0 };
static const Position s_normalZNeg = { 0.0, 0.0, -1.0 };

static void _InitStartingPos(
   const long csphere,
   long aisphere[],
   const double aradius[],
   double baseMin,
   double baseBest,
   double baseMax,
   double *pbase,
   Position aposStart[]);
static void _TweakStartingPos(
   const long csphere,
   long aisphere[],
   const double aradius[],
   double baseMin,
   double baseBest,
   double baseMax,
   double *pbase,
   Position aposStart[]);
static void _DropSpheres(
   long csphere,
   const long *paisphere,
   const double aradius[],
   const Position *paposStart,
   Position apos[],
   double base,
   double *pvolume);
static void _DropOneSphere(
   const Position &posStart,
   double radius,
   int csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   Position * pposResult,
   long * pisphereHit);
static int _FFindObstruction(
   const Position normalMove,
   int fNear,
   const Position &posStart,
   double radius,
   int csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   Position * pposResult,
   long * pisphereHit);

PackSpheres
void PackSpheres(
  long csphere,        /* input: number of spheres to pack */
  double aradius[],    /* input: radius of each of numSpheres spheres */
  Position aposBest[]  /* output: location of center of each sphere */
)
{
   int isphere;
   double volGuess, vol, volBest;
   double base, baseMin, baseMax, baseBest;
   double radiusLarge, radiusSum;
   ulong tickStart, tickCur;
   
   tickStart = LMGetTicks();
   radiusLarge = radiusSum = 0.0;
   for (isphere = 0, volGuess = 0.0; isphere < csphere; ++isphere)
   {
      double radius = aradius[isphere];
      volGuess += 8.0 * radius * radius * radius;
      
      if (radius > radiusLarge)
         radiusLarge = radius;
      radiusSum += radius;
   }
   
   baseMin = 2.0 * radiusLarge;
   baseMax = 2.0 * radiusSum;
   Assert(baseMin <= baseMax);
   
   baseBest = baseMin;
   _DropSpheres(csphere, NULL, aradius, NULL, aposBest, 
            baseBest, &volBest);
   
   base = baseMax;
   _DropSpheres(csphere, NULL, aradius, NULL, aposBest, 
            base, &vol);
   if (vol < volBest)
   {
      volBest = vol;
      baseBest = base;
   }
   
   base = sqrt(baseMin * baseMax);
   _DropSpheres(csphere, NULL, aradius, NULL, aposBest, 
            base, &vol);
   if (vol < volBest)
   {
      volBest = vol;
      baseBest = base;
   }
   
   char * pbBlock = NewPtr(csphere * sizeof(Position) + 
                  csphere * sizeof(Position) + csphere * sizeof(long));
   
   if (pbBlock != NULL)
   {
      long iIter;

      Position * aposStart = (Position *)pbBlock;
      Position * aposEnd = &aposStart[csphere];
      long * aisphere = (long *)&aposEnd[csphere];
      long tickNext = tickStart + dtickCheckScore;
   double scorePrev = _Score(volBest, LMGetTicks() - tickStart);
#ifdef KEEP_GOING
      double scoreBest = scorePrev;
      int iIterBest = 0;
#endif   
      
      for (iIter = 0; iIter < cIterLim; ++iIter)
      {
         tickCur = LMGetTicks();
         if (tickCur >= tickNext)
         {
            ulong dtickCur = tickCur - tickStart;
            if (dtickCur >= dtickFirstCheck)
            {
               if (dtickCur >= dtickLastCheck)
                  break;
                  
               double score = _Score(volBest, dtickCur);
#ifdef KEEP_GOING
               if (score < scoreBest)
               {
                  scoreBest = score;
                  iIterBest = iIter;
               }
#else
               if (score > scorePrev)
                  break;
#endif
               scorePrev = score;
            }
            while (tickNext < tickCur)
               tickNext += dtickCheckScore;
         }
         
         // pick a new scenario
         if (iIter == 0)
            _InitStartingPos(csphere, aisphere, aradius, 
                  baseMin, baseBest, baseMax, &base, aposStart);
         else
            _TweakStartingPos(csphere, aisphere, aradius, 
               baseMin, baseBest, baseMax, &base, aposStart);
         
         // try the new scenario
         _DropSpheres(csphere, aisphere, aradius, aposStart, 
               aposEnd, base, &vol);
         if (_FAccept(vol, volBest))
         {
            volBest = vol;
            baseBest = base;
         BlockMove(aposEnd, aposBest, csphere * sizeof(Position));
         }
         
         // if the largest sphere determined the height, then reduce baseMax
      if (vol <= 2.0 * (radiusLarge + epsilon) * base * base)
         {
            Assert(base <= baseMax);
            baseMax = base;
         }
      }
   }
   
   if (pbBlock != NULL)
      DisposePtr((Ptr) pbBlock);
}

_InitStartingPos
static void _InitStartingPos(
   const long csphere,
   long aisphere[],
   const double aradius[],
   double baseMin,
   double baseBest,
   double baseMax,
   double *pbase,
   Position aposStart[])
{
   long isphereCur;
   
   *pbase = baseBest;
   for (isphereCur = 0; isphereCur < csphere; ++isphereCur)
   {
      Position *ppos = &aposStart[isphereCur];
      double radiusCur = aradius[isphereCur];
      
      aisphere[isphereCur] = isphereCur;
      ppos->coordinate[0] = 
            GRandInRange(radiusCur, *pbase - radiusCur);
      ppos->coordinate[1] = 
            GRandInRange(radiusCur, *pbase - radiusCur);
      ppos->coordinate[2] = csphere * *pbase;
   }
}

_TweakStartingPos
static void _TweakStartingPos(
   const long csphere,
   long aisphere[],
   const double aradius[],
   double baseMin,
   double baseBest,
   double baseMax,
   double *pbase,
   Position aposStart[])
{
   long isphereCur;
   double dbase;
   
   // change the base size?
   if (GRandInRange(0.0, 1.0) < 0.1)
   {
      dbase = GRandInRange(-1.0, 1.0);
      dbase *= fabs(dbase);
      dbase *= 0.25 * (baseMax - baseMin);
      *pbase = baseBest + dbase;
      *pbase = fmax(baseMin, *pbase);
      *pbase = fmin(baseMax, *pbase);
   }
   
   // rearrange the drop order?
   if (GRandInRange(0.0, 1.0) < 4.0)
   {
      for (long index = csphere; - index > 0; )
      {
         long indexSwap;
         long isphereSav;
         
         indexSwap = ((unsigned long)LRand()) % index;
         Assert(0 <= indexSwap && indexSwap < index);
         isphereSav = aisphere[index];
         aisphere[index] = aisphere[indexSwap];
         aisphere[indexSwap] = isphereSav;
      }
   }
   
   // change the starting positions
   for (isphereCur = 0; isphereCur < csphere; ++isphereCur)
   {
      Position *ppos = &aposStart[isphereCur];
      double radiusCur = aradius[isphereCur];
      
      ppos->coordinate[0] = 
            GRandInRange(radiusCur, *pbase - radiusCur);
      ppos->coordinate[1] = 
            GRandInRange(radiusCur, *pbase - radiusCur);
      ppos->coordinate[2] = csphere * *pbase;
   }
}

_DropSpheres
static void _DropSpheres(
   const long csphere,
   const long *paisphere,
   const double aradius[],
   const Position *paposStart,
   Position aposEnd[],
   double base,
   double *pvol)
{
   long csphereDone;
   
   for (csphereDone = 0; csphereDone < csphere; ++csphereDone)
   {
      Position posStart, posLand;
      double radiusCur;
      long isphereHit;
      long isphereCur;

      isphereCur = paisphere == NULL ? csphereDone : 
            paisphere[csphereDone];

      radiusCur = aradius[isphereCur];
      
      // pick a starting point for the current sphere
      Assert(base >= radiusCur*2.0);
      if (paposStart == NULL)
      {
         posStart.coordinate[0] = 
            GRandInRange(radiusCur, base - radiusCur);
         posStart.coordinate[1] = 
            GRandInRange(radiusCur, base - radiusCur);
      }
      else
      {
         posStart.coordinate[0] = 
               paposStart[isphereCur].coordinate[0];
         posStart.coordinate[1] = 
               paposStart[isphereCur].coordinate[1];
      }
      
      // drop it
   _DropOneSphere(posStart, radiusCur, csphereDone, paisphere, 
         aradius, aposEnd, &aposEnd[isphereCur], &isphereHit);
      
      // try to move it around the sphere it hit
   for (int cIter = 0; isphereHit != -1 && cIter < isphereCur; 
            ++cIter)
      {
         Position vecMove, vecMoveXY, normalMove;
         Position posHit;
         double distH, distMove;
         int icoord;
         
         posHit = aposEnd[isphereHit];
         SubVec(aposEnd[isphereCur], posHit, &vecMove);
         vecMoveXY = vecMove;
         vecMoveXY.coordinate[2] = 0;
         distH = LengthVec(vecMoveXY);
         
         if (distH < epsilon)
            break;
            
         ScaleVec(1.0/distH, vecMoveXY, &normalMove);
         distMove = radiusCur + aradius[isphereHit];
         Assert(distMove > distH - epsilon);
         
         // don't move out of the box
         for (icoord = 0; icoord <= 1; ++icoord)
         {
            if (normalMove.coordinate[icoord] < -epsilon)
            {
               if (posHit.coordinate[icoord] + 
         distMove * normalMove.coordinate[icoord] < radiusCur)
            distMove = (radiusCur - posHit.coordinate[icoord]) / 
                     normalMove.coordinate[icoord];
            }
            else if (normalMove.coordinate[icoord] > epsilon)
            {
               if (posHit.coordinate[icoord] + distMove * 
               normalMove.coordinate[icoord] > base - radiusCur)
                  distMove = (base - radiusCur - 
                                             posHit.coordinate[icoord]) / 
                                          normalMove.coordinate[icoord];
            }
         }
         
         Assert(distMove >= distH - epsilon);
         if (distMove < distH + epsilon)
            break;
            
         AddScaleVec(posHit, distMove, normalMove, &posStart);
         
   _DropOneSphere(posStart, radiusCur, csphereDone, paisphere, 
                  aradius, aposEnd, &posLand, &isphereHit);
         
         if (posLand.coordinate[2] > 
                  aposEnd[isphereCur].coordinate[2] - epsilon)
            break;
         
         aposEnd[isphereCur] = posLand;
      
      }

      // try move it toward the edges
      int fImproved, cIter;
      for (fImproved = fTrue, cIter = 1; fImproved; ++cIter)
      {
         Assert(cIter < 15);
         fImproved = fFalse;
         for (int dir = 0; dir < 4; ++dir)
         {
            Position normalMove;
            int fHit;
            double sEdge;
            Position aposStart[2];
            int cposStart;
            
            switch (dir)
            {
            case 0:
               normalMove = s_normalX;
               sEdge = base - radiusCur;
               break;
            case 1:
               normalMove = s_normalY;
               sEdge = base - radiusCur;
               break;
            case 2:
               normalMove = s_normalXNeg;
               sEdge = -radiusCur;
               break;
            case 3:
               normalMove = s_normalYNeg;
               sEdge = -radiusCur;
               break;
            }
            
            fHit = _FFindObstruction(
                     normalMove,
                     fTrue/*fNear*/,
                     aposEnd[isphereCur],
                     radiusCur,
                     csphereDone,
                     paisphere,
                     aradius,
                     aposEnd,
                     &posLand,
                     &isphereHit);
            
            cposStart = 0;
            if (!fHit || DotVec(posLand, normalMove) > sEdge)
            {
               posLand = aposEnd[isphereCur];
               AddScaleVec(posLand, sEdge - 
                        DotVec(posLand, normalMove), normalMove, 
                                    &aposStart[cposStart++]);
               cposStart = 1;
            }
            else
            {
         LinearComboVec(0.5, posLand, 0.5, aposEnd[isphereCur], 
                                 &aposStart[cposStart++]);
               aposStart[cposStart++] = posLand;
            }
            
for (int iposStart = 0; iposStart < cposStart; ++iposStart)
            {
               _DropOneSphere(aposStart[iposStart], radiusCur, 
            csphereDone, paisphere, aradius, aposEnd, &posLand, 
                     &isphereHit);
               
               if (posLand.coordinate[2] < 
                     aposEnd[isphereCur].coordinate[2] + epsilon)
               {
                  if (aposEnd[isphereCur].coordinate[2] - 
                           posLand.coordinate[2] > radiusCur * 0.05)
                     fImproved = fTrue;
                  aposEnd[isphereCur] = posLand;
            
               }
            }
         }
      }
   }
   
   ComputeVol(csphere, NULL, aradius, aposEnd, base, pvol);
}

_DropOneSphere
static void _DropOneSphere(
   const Position &posStart,
   double radius,
   int csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   Position * pposResult,
   long * pisphereHit)
{
   Position posBase;
   int fHit;
   
   posBase = posStart;
   posBase.coordinate[2] = 0.0;
   
   *pposResult = posBase;

   fHit = _FFindObstruction(
            s_normalZ,
            fFalse, /* fNear */
            posBase,
            radius,
            csphere,
            paisphere,
            aradius,
            apos,
            pposResult,
            pisphereHit
            );
   
   if (!fHit || pposResult->coordinate[2] < radius)
   {
      *pisphereHit = -1;
      pposResult->coordinate[2] = radius;
   }

   // add some fudge
   pposResult->coordinate[2] += epsilon;
   
#ifdef DEBUG
   for (long csphereChecked = 0; csphereChecked < csphere; 
               ++csphereChecked)
   {
      Position vecT;
      double dist, distGap;
      int isphere;
      
      isphere = paisphere == NULL ? csphereChecked : 
                                                paisphere[csphereChecked];
      
      SubVec(apos[isphere], *pposResult, &vecT);
      dist = LengthVec(vecT);
      distGap = dist - (radius + aradius[isphere]);
      Assert(distGap >= 0.0);
   }
#endif
}

_FFindObstruction
// moving a sphere with specifed radius from posStart in the direction normalMove,
// find the nearest or farthest obstruction
// If there is an obstruction, return the index to the obstructing sphere
// and the position to which the object can move.
static int _FFindObstruction(
   const Position normalMove,
   int fNear,
   const Position &posStart,
   double radius,
   int csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   Position * pposResult,
   long * pisphereHit)
{
   double zBest;
   
   *pisphereHit = -1;

   for (int csphereChecked = 0; csphereChecked < csphere; 
               ++csphereChecked)
   {
      Position vecToOther, vecPerp, vecParallel;
      double distPerpSq, distSep, distSepSq;
      double z, dz;
      int isphere;
      
      isphere = paisphere == NULL ? csphereChecked : 
                                                paisphere[csphereChecked];
      SubVec(apos[isphere], posStart, &vecToOther);
      ProjectVec(vecToOther, normalMove, &vecParallel);
      SubVec(vecToOther, vecParallel, &vecPerp);
      
      distPerpSq = DotVec(vecPerp, vecPerp);
      distSep = radius + aradius[isphere];
      distSepSq = distSep * distSep;
      
      if (distPerpSq > distSepSq)
         continue;
      
      dz = sqrt(distSepSq - distPerpSq);
      if (fNear)
         dz = -dz;
      z = DotVec(vecParallel, normalMove) + dz;
      
      if (z >= 0.0 && (*pisphereHit == -1 || 
                                    (fNear ? z < zBest : z > zBest)))
      {
         zBest = z;
         *pisphereHit = isphere;
      }
   }
   
   if (*pisphereHit == -1)
      return fFalse;
      
   *pposResult = posStart;
   AddScaleVec(posStart, zBest, normalMove, pposResult);
   
   return fTrue;
}

VecUtil.cpp
#include "Spheres.h"
#include "VecUtil.h"

#include <math.h>
#include <stdlib.h>

enum {
   fFalse = 0,
   fTrue = 1
};

// disable asserts
#define Assert(f)

// math utilities

double GRandInRange(double gLow, double gHigh)
{
   double g;
   
   g = gLow + rand() * (gHigh - gLow) / RAND_MAX;
   Assert(gLow <= g && g <= gHigh);
   return g;
}

// return a long's worth of randomness
long LRand()
{
   long lw;
   
   Assert(RAND_MAX > 256);
   
   lw = 0;
   for (int ib = 0; ib < sizeof(long); ++ib)
      lw = (lw << 8) + (rand() & 0xFF);
   return lw;
}

// vector utilities

void SubVec(const Position &pos1, const Position &pos2, 
      Position *pposResult)
{
   for (int i = 0; i < 3; ++i)
      pposResult->coordinate[i] = pos1.coordinate[i] - 
                                                         pos2.coordinate[i];
}

double DotVec(const Position &pos1, const Position &pos2)
{
   double g = 0.0;
   for (int i = 0; i < 3; ++i)
      g += pos1.coordinate[i] * pos2.coordinate[i];
   return g;
}

double LengthVec(const Position &pos)
{
   return sqrt(DotVec(pos, pos));
}

void ScaleVec(double g, const Position &pos, 
   Position *pposResult)
{
   for (int i = 0; i < 3; ++i)
      pposResult->coordinate[i] = g * pos.coordinate[i];
}

void AddScaleVec(const Position &posBase, double g, 
   const Position &posAdd, Position *pposResult)
{
   for (int i = 0; i < 3; ++i)
      pposResult->coordinate[i] = posBase.coordinate[i] + 
                                                g * posAdd.coordinate[i];
}

void LinearComboVec(double g1, const Position &pos1, double g2, 
      const Position &pos2, Position *pposResult)
{
   for (int i = 0; i < 3; ++i)
      pposResult->coordinate[i] = g1 * pos1.coordinate[i] + 
                                                g2 * pos2.coordinate[i];
}

// project "vec" onto a "normal" vector
void ProjectVec(const Position &vec, const Position &normal, 
      Position *pvecResult)
{
   ScaleVec(DotVec(vec, normal), normal, pvecResult);
}

// sphere stuff

void ComputeVol(
   const long csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   double base,
   double *pvol)
{
   Position posMin, posMax;
   long index;
   int icoord;
   double radius;
   const Position * ppos;

   posMin = posMax = apos[0];

   for (index = 0; index < csphere; ++index)
   {
      long isphere;
      
      isphere = paisphere == NULL ? index : paisphere[index];
      ppos = &apos[isphere];
      radius = aradius[isphere];
      for (icoord = 0; icoord < 3; ++icoord)
      {
         if (ppos->coordinate[icoord] - radius < 
                  posMin.coordinate[icoord])
            posMin.coordinate[icoord] = ppos->coordinate[icoord] - 
                                                            radius;

         if (ppos->coordinate[icoord] + radius > 
                  posMax.coordinate[icoord])
            posMax.coordinate[icoord] = ppos->coordinate[icoord] + 
                                                            radius;
      }
   }

   *pvol = 1.0;
   
   for (icoord = 0; icoord < 3; ++icoord)
   {
      Assert(posMin.coordinate[icoord] >= -epsilon);
   Assert(base == 0 || posMax.coordinate[icoord] <= base+epsilon 
                                       || icoord == 2);
      *pvol *= posMax.coordinate[icoord] - 
                        posMin.coordinate[icoord];
   }
}

Spheres.h

#if defined(__cplusplus)
extern "C" {
#endif

typedef struct Position {
  double coordinate[3];  /* coordinate[0]==X position, [1]==Y, [2]==Z */
} Position;

void PackSpheres(
  long numSpheres,       /* input: number of spheres to pack */
  double radius[],       /* input: radius of each of numSpheres spheres */
  Position location[]    /* output: location of center of each sphere */
);

#if defined (__cplusplus)
}
#endif

VecUtil.h
// error tolerance

const double epsilon (1.0e-10);

// math utilities

double GRandInRange(double gLow, double gHigh);
long LRand();

// vector utilities

void SubVec(const Position &pos1, const Position &pos2, 
   Position *pposResult);
double DotVec(const Position &pos1, const Position &pos2);
double LengthVec(const Position &pos);
void ScaleVec(double g, const Position &pos, 
   Position *pposResult);
void AddScaleVec(const Position &posBase, double g, 
   const Position &posAdd, Position *pposResult);
void ProjectVec(const Position &vec, const Position &normal, 
   Position *pvecResult);
void LinearComboVec(double g1, const Position &pos1, 
   double g2, const Position &pos2, Position *pposResult);

// sphere stuff

void ComputeVol(
   const long csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   double base,
   double *pvol);
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Go from lowly lizard to wicked Wyvern in...
Do you like questing, and do you like dragons? If not then boy is this not the announcement for you, as Loongcheer Game has unveiled Quest Dragon: Idle Mobile Game. Yes, it is amazing Square Enix hasn’t sued them for copyright infringement, but... | Read more »
Aether Gazer unveils Chapter 16 of its m...
After a bit of maintenance, Aether Gazer has released Chapter 16 of its main storyline, titled Night Parade of the Beasts. This big update brings a new character, a special outfit, some special limited-time events, and, of course, an engaging... | Read more »
Challenge those pesky wyverns to a dance...
After recently having you do battle against your foes by wildly flailing Hello Kitty and friends at them, GungHo Online has whipped out another surprising collaboration for Puzzle & Dragons. It is now time to beat your opponents by cha-cha... | Read more »
Pack a magnifying glass and practice you...
Somehow it has already been a year since Torchlight: Infinite launched, and XD Games is celebrating by blending in what sounds like a truly fantastic new update. Fans of Cthulhu rejoice, as Whispering Mist brings some horror elements, and tests... | Read more »
Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »
PUBG Mobile teams up with global phenome...
Since launching in 2019, SpyxFamily has exploded to damn near catastrophic popularity, so it was only a matter of time before a mobile game snapped up a collaboration. Enter PUBG Mobile. Until May 12th, players will be able to collect a host of... | Read more »
Embark into the frozen tundra of certain...
Chucklefish, developers of hit action-adventure sandbox game Starbound and owner of one of the cutest logos in gaming, has released their roguelike deck-builder Wildfrost. Created alongside developers Gaziter and Deadpan Games, Wildfrost will... | Read more »

Price Scanner via MacPrices.net

New today at Apple: Series 9 Watches availabl...
Apple is now offering Certified Refurbished Apple Watch Series 9 models on their online store for up to $80 off MSRP, starting at $339. Each Watch includes Apple’s standard one-year warranty, a new... Read more
The latest Apple iPhone deals from wireless c...
We’ve updated our iPhone Price Tracker with the latest carrier deals on Apple’s iPhone 15 family of smartphones as well as previous models including the iPhone 14, 13, 12, 11, and SE. Use our price... Read more
Boost Mobile will sell you an iPhone 11 for $...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering an iPhone 11 for $149.99 when purchased with their $40 Unlimited service plan (12GB of premium data). No trade-in is required... Read more
Free iPhone 15 plus Unlimited service for $60...
Boost Infinite, part of MVNO Boost Mobile using AT&T and T-Mobile’s networks, is offering a free 128GB iPhone 15 for $60 per month including their Unlimited service plan (30GB of premium data).... Read more
$300 off any new iPhone with service at Red P...
Red Pocket Mobile has new Apple iPhones on sale for $300 off MSRP when you switch and open up a new line of service. Red Pocket Mobile is a nationwide MVNO using all the major wireless carrier... Read more
Clearance 13-inch M1 MacBook Airs available a...
Apple has clearance 13″ M1 MacBook Airs, Certified Refurbished, available for $759 for 8-Core CPU/7-Core GPU/256GB models and $929 for 8-Core CPU/8-Core GPU/512GB models. Apple’s one-year warranty is... Read more
Updated Apple MacBook Price Trackers
Our Apple award-winning MacBook Price Trackers are continually updated with the latest information on prices, bundles, and availability for 16″ and 14″ MacBook Pros along with 13″ and 15″ MacBook... Read more
Every model of Apple’s 13-inch M3 MacBook Air...
Best Buy has Apple 13″ MacBook Airs with M3 CPUs in stock and on sale today for $100 off MSRP. Prices start at $999. Their prices are the lowest currently available for new 13″ M3 MacBook Airs among... Read more
Sunday Sale: Apple iPad Magic Keyboards for 1...
Walmart has Apple Magic Keyboards for 12.9″ iPad Pros, in Black, on sale for $150 off MSRP on their online store. Sale price for online orders only, in-store price may vary. Order online and choose... Read more
Apple Watch Ultra 2 now available at Apple fo...
Apple has, for the first time, begun offering Certified Refurbished Apple Watch Ultra 2 models in their online store for $679, or $120 off MSRP. Each Watch includes Apple’s standard one-year warranty... Read more

Jobs Board

DMR Technician - *Apple* /iOS Systems - Haml...
…relevant point-of-need technology self-help aids are available as appropriate. ** Apple Systems Administration** **:** Develops solutions for supporting, deploying, Read more
Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
IT Systems Engineer ( *Apple* Platforms) - S...
IT Systems Engineer ( Apple Platforms) at SpaceX Hawthorne, CA SpaceX was founded under the belief that a future where humanity is out exploring the stars is Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.