TweetFollow Us on Twitter

Sep 98 Prog Challenge

Volume Number: 14 (1998)
Issue Number: 9
Column Tag: Programmer's Challenge

Sep 98 Programmer's Challenge

by Bob Boonstra, Westford, MA

Big Baby

Fifty years ago this past June, the Manchester Mark I prototype computer, also known as "Baby", became operational. Baby was the first computer to store a program electronically, and was also the first computer to store instructions and data in the same memory. Because vacuum tube technology was too immature to store memory reliably, Baby was designed to test memory based on a cathode ray tube. Not much memory, mind you. Baby boasted a full 1K bits of memory, organized as 32 words (or lines) of 32 bits each.

In celebration of the birth of the first stored program computer on June 21, 1948, the Department of Computer Science at the University of Manchester recently reconstructed Baby and ran a programming contest to write the most imaginative program for Baby. Inspired by that contest, your Challenge is to write an assembler and an emulator for an extended ("Big") version of Baby. The prototype for the code you should write is:

#if defined(__cplusplus)
pragma extern "C" {
#endif

#define kMaxInstructions 32

typedef UInt32 CRT_memory[kMaxInstructions];

pascal void AssembleBabyProgram(
   char *program,
   CRT_memory memory,
   UInt32 address_bits
);

pascal void ExecuteBabyProgram(
   CRT_memory memory,
   UInt32 address_bits
);

#if defined(__cplusplus)
}
#endif

Baby has a single general-purpose register, called the Accumulator. The program counter is called the Control Instruction, or CI. The CI is incremented just before the next instruction is fetched, which means that a jump instruction, for example, is coded with a value one less than the actual target address. Baby also has a red light that indicates the program has halted. One interesting thing about Baby is that it lacks an addition instruction - addition is done by subtraction.

Baby's instruction repertoire is listed below. The function bits (or opcode) associated with each instruction is listed in parentheses after the mnemonic.

STO (110)
Store the contents of the Accumulator in the store line.
SUB (001 or 101)
Subtract the contents of the store line from the Accumulator. There is no ADD instruction; addition is done indirectly by combining the SUB and the LDN instruction.
LDN (010)
Copy the contents of the store line, negated, to the accumulator.
JMP (000)
Copy the contents of the store line to the CI (so the store line holds the number of the line one before we want to jump to). In modern terms, this an indirect jump, which uses up an extra store line compared to a direct jump.
JRP (100)
Add the contents of the store line to the CI. This looks forward to larger machines, where it would be important to be able to load the same code in different places, and hence would need relative jumps.
CMP (011)
Skip the next instruction if the contents of the Accumulator are negative, i.e. a conditional branch.
STOP (111)
Stop the machine and turn the red light on
NUM (N/A)
An assembler mnemonic to initialize a store line to a data value.

For example, the following program computes the greatest common divisor of the number in locations 30 and 31:

22
0000 NUM 0
0001 LDN 30
0002 STO 29
0003 LDN 31
0004 STO 31
0005 LDN 31
0006 STO 30
0007 LDN 29
0008 SUB 30
0009 CMP
0010 JRP 27
0011 SUB 31
0012 STO 31
0013 SUB 28
0014 CMP
0015 JMP 00
0016 STP
0027 NUM -3
0028 NUM 2
0029 NUM 0
0030 NUM 3141593
0031 NUM 5214

Baby's instructions are assembled into a 32 bit word by placing the function code associated with the mnemonic into bits 13-15 (numbered with bit 0 as the most significant bit). In the original Baby, the store line associated with the instruction is placed in bits 0-4. Bits 5-12 and 16-31 are not used as part of the instruction, although they can be used as data. The program listed above assembles to the following:

22
0000:00000000000000000000000000000000
0001:01111000000000100000000000000000
0002:10111000000001100000000000000000
0003:11111000000000100000000000000000
0004:11111000000001100000000000000000
0005:11111000000000100000000000000000
0006:01111000000001100000000000000000
0007:10111000000000100000000000000000
0008:01111000000000010000000000000000
0009:00000000000000110000000000000000
0010:11011000000001000000000000000000
0011:11111000000000010000000000000000
0012:11111000000001100000000000000000
0013:00111000000000010000000000000000
0014:00000000000000110000000000000000
0015:00000000000000000000000000000000
0016:00000000000001110000000000000000
0027:10111111111111111111111111111111
0028:01000000000000000000000000000000
0029:00000000000000000000000000000000
0030:10011011111101111111010000000000
0031:01111010001010000000000000000000

Our contest will make one change to the original Baby: in our extended, Big Baby, machine, the store line is extended from 5 bits (0-4) to address_bits bits (0 - address_bits-1). This allows more than 32 words of memory and therefore larger programs.

Your AssembleBabyProgram routine should accept the mnemonic input listed above, pointed to by the program parameter, and assemble them into 32-bit Baby instructions in memory. Your ExecuteBabyProgram routine will be called to execute the program one or more times. Both of your routines will be provided an address_bits parameter that describes the size of memory. You will be asked to assemble more than one program, your assembled programs may be executed more than one time each, and you may be asked to execute a program that has been hand-assembled.

More information about the University of Manchester Baby programming contest can be found at http://www.cs.man.ac.uk/prog98/. Programming reference documentation for Baby can be found at http://www.cs.man.ac.uk/prog98/ssemref.html and at ftp://ftp.cs.man.ac.uk/pub/CCS-Archive/misc/progref1.doc.

The winner will be the solution that assembles and executes a set of test programs in the minimum amount of time.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, Pascal or, as is our tradition in the month of September, in assembly language. Thanks to Eric Shapiro for suggesting this Challenge.

Three Months Ago Winner

Congratulations to Tom Saxton for writing the most successful simulated gambler at the blackjack table of our June Programmer's Challenge Casino. Tom beat out four other entries and was one of only two entries to actually come out ahead at the blackjack table.

Tom precomputed the expected winnings for each situation and created tables with the action that led to the best result. He uses the Hi-Lo card counting method to determine whether the remaining cards contain a disproportionate number of high-valued cards, and then uses that estimate to adjust his wager. Tom's solution is also not too greedy; it contains heuristics to quit when it has won a reasonable amount or played long enough, ensuring that it has wagered enough credits to avoid the "freeloader" penalty imposed by the problem.

A few words about our other gamblers are in order. The second-place solution, by Kevin Hewitt, also used precomputed tables, but his were based only on the initial pair of cards dealt. Kevin also spent more time at the table, quitting only when winnings or losses exceeded a threshold. JG Heithcock's solution spent the least amount of time at the table. He quit soon after the minimum total bet criterion was met. Ken Slezak kept playing until he lost 75% of his bankroll (or quadrupled his money) and Randy Boring played until he ran out of money or, as it turned out, until the house threw him out of the casino. Both of those players left with not much more than the shirts on their backs.

Here are the statistics for the entries to the Blackjack Challenge. Each player played a series of five games where the house varied the number of decks of cards used. Players were given the same number of credits at the start of each game, totaling 21000 credits for all of the games. The table below lists the total number of credits wagered by the player, the number of credits left when the player decided to quit, the number of hands played, total execution time, and the overall player score. Also listed are the code and data sizes for the entries, along with the programming language used. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges to date prior to this one.

Name Credits Wagered Credits Left Hands Played Exec. Time Score Code Size Data Size Lang
Tom Saxton (19) 47451 25199 327 7169 25194 1496 1924 C
Kevin Hewitt 438700 23800 1833 37923 23766 996 2156 C
JG Heithcock (20) 22616 20484 769 17950 20470 1304 232 C
Ken Slezak (20) 91760 9140 1701 36911 9106 1240 172 C
Randy Boring (81) 437230 8670 15425 460099 8213 4920 353 C

Top Contestants

Here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated more than 20 points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 190
  2. Boring, Randy 76
  3. Cooper, Greg 54
  4. Mallett, Jeff 50
  5. Rieken, Willeke 47
  6. Nicolle, Ludovic 34
  7. Lewis, Peter 31
  8. Maurer, Sebastian 30
  9. Saxton, Tom 29
  10. Heithcock, JG 27
  11. Gregg, Xan 24
  12. Murphy, ACC 24
  13. Hart, Alan 21
  14. Antoniewicz, Andy 20
  15. Day, Mark 20
  16. Higgins, Charles 20
  17. Hostetter, Mat 20
  18. Studer, Thomas 20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

  • 1st place 20 points
  • 2nd place 10 points
  • 3rd place 7 points
  • 4th place 4 points
  • 5th place 2 points
  • Finding bug 2 points
  • Suggesting Challenge 2 points

Here is Tom's winning solution:

Player.c
Copyright © 1998 Tom Saxton

#include "BlackJack.h"

// Naming Conventions:
//
// Without getting into the gory details of the Hungarian naming convention,
// here are some common prefixes and their meanings:
//
//      a       array
//      p       pointer
//      c       count
//      mp      map (one data type to another)
//      i       index
//
// The prefixes modify a base type. So, if FOO is a base type (like a struct,
// or an enum), the following declarations illustrate the above prefixes:
//
//      FOO     foo;
//      FOO *   pfoo;
//      FOO     afoo[10];
//      int     ifoo; // an index into an array of FOOs
//      int     cfoo; // a count of FOOs.
//
//      for (ifoo = 0; ifoo < cfoo; ++ifoo)
//         pfoo = &afoo[ifoo];
//

enum { fFalse = 0, fTrue = 1 };
#define DIM(a) (sizeof(a)/sizeof((a)[0]))

// Be sure to enable this define to pick up a couple of post-deadline bug fixes.
//
// #define BUGFIX

// disable debug code
#define Assert(f)

// The following tables determine the actions for all possible hands,
// divided into three groups: pairs, soft hands and hard hands, considered
// in that order. (A pair of aces is treated as a pair, not as a soft hand.)
//
// The tables were computed by taking the Dealer's up card and assuming
// a huge shoe with an even card distribution finding the probability
// for each of the possible final dealers scores (bust, 17, 18, 19, 20 and 21).
//
// Then, given that table, I computed the expected earnings (win, lose or
// push) for each of the possible actions, and recorded the action with
// the best result.
//
// I found the book "Best Blackjack" by Frank Scoblete (c) 1996 to be
// helpful, and my tables are close to his multi-deck tables.
// I modeled an infinite, evenly distributed shoe, he may have modeled
// a fixed number of decks.

// macros to make these tables manageable...
#define H kHitMe
#define D kDoubleDownAndHitMe
#define S kStandPat
#define X kSplitAndHitMe
#define B kClaimBlackjack

// For "hard" hands (no Aces scored as 11), plug in the dealer's up card
// (minus 1) and the hand's score to find the next action. If this isn't the
// first action of the hand, treat kDoubleDownAndHitMe as kHitMe.
Action mp_spot_score_actionHard[10][22] = 
{
//      0   - 21
   { H,H,H,H,H,H,H,H,H,H,H,H,H,H,H,H,H,S,S,S,S,S },   /*  A */
   { H,H,H,H,H,H,H,H,H,D,D,D,H,S,S,S,S,S,S,S,S,S },   /*  2 */
   { H,H,H,H,H,H,H,H,H,D,D,D,H,S,S,S,S,S,S,S,S,S },   /*  3 */
   { H,H,H,H,H,H,H,H,H,D,D,D,S,S,S,S,S,S,S,S,S,S },   /*  4 */
   { H,H,H,H,H,H,H,H,H,D,D,D,S,S,S,S,S,S,S,S,S,S },   /*  5 */
   { H,H,H,H,H,H,H,H,D,D,D,D,S,S,S,S,S,S,S,S,S,S },   /*  6 */
   { H,H,H,H,H,H,H,H,H,D,D,D,H,H,H,H,H,S,S,S,S,S },   /*  7 */
   { H,H,H,H,H,H,H,H,H,H,D,D,H,H,H,H,H,S,S,S,S,S },   /*  8 */
   { H,H,H,H,H,H,H,H,H,H,D,D,H,H,H,H,H,S,S,S,S,S },   /*  9 */
   { H,H,H,H,H,H,H,H,H,H,H,D,H,H,H,H,H,S,S,S,S,S }    /*  10 */
};

// For "soft" hands (at least one Ace used as an 11), plug in the dealer's up card
// (minus 1) and the hand's "other" card (or combined score without the ace)
// to find the next action.
Action mp_spot_spot_actionSoft[10][10] = 
{
   { H, H, H, H, H, H, S, S, S, B },   /*  A */
   { H, H, H, H, H, D, S, S, S, B },   /*  2 */
   { H, H, H, H, H, D, D, S, S, B },   /*  3 */
   { H, H, H, H, D, D, D, S, S, B },   /*  4 */
   { H, H, H, D, D, D, D, S, S, B },   /*  5 */
   { H, H, H, D, D, D, D, S, S, B },   /*  6 */
   { H, H, H, H, H, D, S, S, S, B },   /*  7 */
   { H, H, H, H, H, H, S, S, S, B },   /*  8 */
   { H, H, H, H, H, H, H, S, S, B },   /*  9 */
   { H, H, H, H, H, H, H, S, S, B }    /* 10 */
};

// If dealt a pair, plug in the dealer's up card (minus 1) and the spot
// value of the pair (minus 1) to find the suggested action.
Action mp_spot_spot_actionPair[10][10] = 
{
   { X, H, H, H, H, H, H, H, S, S },   /*  A */
   { X, X, X, H, D, H, X, X, X, S },   /*  2 */
   { X, X, X, H, D, H, X, X, X, S },   /*  3 */
   { X, X, X, H, D, X, X, X, X, S },   /*  4 */
   { X, X, X, H, D, X, X, X, X, S },   /*  5 */
   { X, X, X, D, D, X, X, X, X, S },   /*  6 */
   { X, X, X, H, D, H, X, X, S, S },   /*  7 */
   { X, X, X, H, D, H, H, X, X, S },   /*  8 */
   { X, X, H, H, D, H, H, X, X, S },   /*  9 */
   { X, H, H, H, H, H, H, H, S, S }    /*  10 */
};

// undefine shortcuts used in the above tables
#undef H
#undef D
#undef S
#undef X
#undef B

// Score bust as zero.
#define scoreBust            0
// The Player's hand is limited to five cards.
#define ccardMaxPlayer       5
// The dealer can never draw more than nine cards
// (nine 2's for example).
#define ccardMaxDealer      10

// Entry in the SPOT table, used for scoring and printing card values
typedef struct ESPOT
{
   char   score;
   char   sz[3];
} ESPOT;

static const ESPOT s_dnspot[kKing+1] = 
{
   {  0, "?" },
   {  1, "A" },
   {  2, "2" },
   {  3, "3" },
   {  4, "4" },
   {  5, "5" },
   {  6, "6" },
   {  7, "7" },
   {  8, "8" },
   {  9, "9" },
   { 10, "10" },
   { 10, "J" },
   { 10, "Q" },
   { 10, "K" },
};

// game statistics...
static int s_cdeck;
static int s_ccreditStart;
static int s_ccreditMinBet;
static int s_ccreditMidBet;
static int s_ccreditMaxBet;
static int s_ccreditBalance;
static int s_ccreditTotalBet;

// callback functions
static BetProc *s_pfnMakeABet;
static HitProc *s_pfnHitMe;

// function to score a hand
static int _ScoreHand(const Card acard[], int ccard,
                              int *pcAce);

// struct for counting cards...
typedef struct DECK
{
   int acspot[10+1];
   int cspotStart;
   int cspotRemain;
   int dcount;
   int fInfinite;
} DECK;
static DECK s_deck;
// calls to reset card counters and count the cards in a hand
void _InitDeck(int cdeck, int fInfinite);
void _CountCards(const Card acard[], int ccard);
// call to compute the proper action given the player's hand and
// the dealer's up card, and whether or not this is the first action
static Action _ActionLookupHand(Spot spotDealer, Card acard[], int ccard, int fFirst);

InitBlackjack
// Call to start a game
void InitBlackjack(
   int numDecks,       /* number of decks used by the dealer, 2..10*/
   int yourBankroll,   /* number of credits you have to start */
   int minBet,         /* minimum bet for each hand */
   int maxBet,         /* maximum bet for each hand */
   BetProc pfnMakeABet,/* callback to place a wager */
   HitProc pfnHitMe    /* callback to get a card */
)
{
   s_cdeck             = numDecks;
   s_ccreditStart      = yourBankroll;
   s_ccreditMinBet     = minBet;
   s_ccreditMaxBet     = maxBet;
   s_pfnMakeABet       = pfnMakeABet;
   s_pfnHitMe          = pfnHitMe;

   s_ccreditTotalBet   = 0;
   s_ccreditBalance    = s_ccreditStart;
}

Blackjack
// Call to play a hand
Boolean Blackjack(Boolean fNewDeck)
{
   int      ccreditBet;
   Card     acardPlayer[ccardMaxPlayer], acardDealer[ccardMaxDealer];
   int      ccardPlayer, ccardDealer;
   Action   actionFirst;
   int      ccreditWin;
   Spot     spotDealer;
   int      ihand, chand;
   int      count;
   Result   result;
   
   if (fNewDeck)
      _InitDeck(s_cdeck, fFalse /*fInfinite*/);
   // normalize the card count. A positive count means that the shoe is
   // heavy in large cards, which makes it more likely for the dealer to
   // bust. A negative count means that the shoe is heavy in small cards,
   // which makes it less likely that the dealer with bust.
   count = (s_deck.dcount*52)/s_deck.cspotRemain;
   // Make a bet that is proportional to our current balance, so that losing
   // streaks don't clean us out, and winning streaks rake in extra chips.
   // Bet more when the count is high, less when it's low, but stay within
   // the stated betting limits.
   ccreditBet = (count+2)*s_ccreditBalance/50;
   if (ccreditBet < s_ccreditMinBet)
      ccreditBet = s_ccreditMinBet;
   else if (ccreditBet > s_ccreditMaxBet)
      ccreditBet = s_ccreditMaxBet;
   // Place bet, get some cards
   (*s_pfnMakeABet)(ccreditBet, acardPlayer, acardDealer);
   ccardPlayer = ccardDealer = 2;
   // store and normalize the dealer's up card
   spotDealer = acardDealer[1].spot;
   if (spotDealer > k10)
      spotDealer = k10;
   // get the first action for the hand
   actionFirst = 
            _ActionLookupHand(spotDealer, acardPlayer, 2, fTrue);
   if (actionFirst == kDoubleDownAndHitMe)
      ccreditBet *= 2;
   chand = (actionFirst == kSplitAndHitMe) ? 2 : 1;
   // play out the hand(s) (there are two hands if we kSplitAndHitMe)
   for (ihand = 0; ihand < chand; ++ihand)
   {
      Boolean   fInsurance;
      Action action = actionFirst;
      // take the "insurance" side bet when the dealer shows an Ace and there is
      // a better than one third chance of the dealer having a 10 for the other card.
      fInsurance = (spotDealer == kAce) && 
                        (3*s_deck.acspot[k10] > s_deck.cspotRemain);
      for(;;)
      {
         // play out an action
         result = 
               (*s_pfnHitMe)(action, fInsurance, acardPlayer, 
                           &ccardPlayer, acardDealer, &ccardDealer, 
                                 &ccreditWin);
         if (result != kNoResult)
            break;
         
         // If we didn't kStandPat or bust, calculate the next action
         action = _
         ActionLookupHand(spotDealer, acardPlayer, ccardPlayer, 
                                                fFalse);
      }
      
      // count the cards shown in this hand
      _CountCards(acardPlayer, ccardPlayer);
      if (ihand == chand-1)
         _CountCards(acardDealer, ccardDealer);
      
      // tally our win/loss
      s_ccreditBalance += ccreditWin;
      s_ccreditTotalBet += ccreditBet;
   }

   // If we have lost most of our money, quit
   if (s_ccreditBalance < s_ccreditStart/3)
   {
      return fFalse;
   }
   // If we have won a lot, and will avoid the freeloader penalty, quit
   if (s_ccreditBalance > 7*s_ccreditStart/4 && 
            s_ccreditTotalBet > s_ccreditStart)
   {
      return fFalse;
   }
   // If we have won some, and played for twice the freeloader requirement, quit
   if (s_ccreditBalance > 5*s_ccreditStart/4 && 
            s_ccreditTotalBet > 2*s_ccreditStart)
   {
      return fFalse;
   }
   // If we haven't lost, and played for five times the freeloader requirement, quit
   if (s_ccreditBalance > s_ccreditStart && 
            s_ccreditTotalBet > 5*s_ccreditStart)
   {
      return fFalse;
   }
   // If we've played 10 times the freeloader penalty, quit before the time penalty
   // takes it all away...
   if (s_ccreditTotalBet > 10*s_ccreditStart)
   {
      return fFalse;
   }
   return fTrue;
}

_ActionLookupHand
// Call to get the next action for this hand
static Action _ActionLookupHand(Spot spotDealer, Card acard[], int ccard, int fFirst)
{
   int score, cAce;
   Spot spot;
   Action action;
   
   // get the hand's score, and the count of Aces scored as 11
   score = _ScoreHand(acard, ccard, &cace);
   Assert(kAce <= spotDealer && spotDealer <= k10);
   if (fFirst && ccard == 2 && acard[0].spot == acard[1].spot)
   {
      // first action on a pair, check the pair's table
      if ((spot = acard[0].spot) > k10)
         spot = k10;
      action = 
         (Action)mp_spot_spot_actionPair[spotDealer-1][spot-1];
   }
   else if (cAce > 0)
   {
      // "soft" hand, check the soft table
      spot = (Spot)(score - 11);
      Assert(kAce <= spot && spot <= k10);
#ifdef DEBUG
      if (ccard == 2)
      {
         int icard = acard[0].spot == kAce ? 1 : 0;
         Assert(spot == acard[icard].spot || 
                        (spot == k10 && acard[icard].spot > k10));
      }
#endif
      action = 
         (Action)mp_spot_spot_actionSoft[spotDealer-1][spot-1];
   }
   else
   {
      // "hard" hand, chech the hard table
      action = 
         (Action)mp_spot_score_actionHard[spotDealer-1][score];
   }
   
   // If it's not the first play of the hand, we can only kStandPat or kHitMe
#ifdef BUGFIX
   // Another Bug Fix: be careful trying to catch illegal actions...
   if (action == kClaimBlackjack && ccard != 2)
      action = kStandPat;
   if (!fFirst && (action == kDoubleDownAndHitMe || 
                                    action == kSplitAndHitMe))
      action = kHitMe;
#else
   // This code is wrong, it incorrectly returns kHitMe in two cases:
   //  1. If a pair of 10s or Aces is split, then one of them turned into a blackjack
   //  2. A score of 21 is reached with an Ace and two or more cards.
   if (!fFirst && action != kStandPat)
      action = kHitMe;
#endif
   return action;
}

_InitDeck
// reset the counts for a fresh set of decks
static void _InitDeck(int cdeck, int fInfinite)
{
   Spot spot;
   int cspot = 4*cdeck;
   for (spot = kAce; spot < k10; ++spot)
      s_deck.acspot[spot] = cspot;
   Assert(spot == k10);
   s_deck.acspot[k10] = 4*cspot;
   s_deck.cspotRemain = s_deck.cspotStart = 52*cdeck;
   s_deck.dcount = 0;
   s_deck.fInfinite = fInfinite;
}

_CountCards
// This is the counting method used by the couple of people I've talked
// who have actually counted cards playing Blackjack. It's call "Hi-Lo"
// in "Best Blackjack". I tried several other counting models listed
// in that book, and this performed the best. It gives a simple assessment
// of how far off balance the shoe is with respect to small and large cards.
static const int s_mp_spot_dcount[k10+1] =
//    A  2  3  4  5  6  7  8  9  10
{ 0, -1, 1, 1, 1, 1, 1, 0, 0, 0, -1 };

// Remove the specified set of cards from the shoe
void _CountCards(const Card acard[], int ccard)
{
   if (s_deck.fInfinite)
      return;
      
   while (ccard- > 0)
   {
      Spot spot = acard[ccard].spot;
// Bug Fix: we shouldn't count hidden cards...
#ifdef BUGFIX
      if (spot == kHiddenSpot)
         continue;
#endif
      if (spot > k10)
         spot = k10;
      -s_deck.acspot[spot];
      -s_deck.cspotRemain;
      
      s_deck.dcount += s_mp_spot_dcount[spot];
   }
}

_ScoreHand
// Determine the score for the given cards. When possible, score
// Aces at 11, and return the number of aces thusly scored.
static int _ScoreHand(const Card acard[], int ccard, int *pcAce)
{
   int cAceDummy;
   int score = 0;
   int cAce = 0;

   if (pcAce == NULL)
      pcAce = &cAceDummy;
   *pcAce = 0;
   while (ccard- > 0)
   {
      if (acard[ccard].spot == kAce)
         ++cAce;
      score += s_dnspot[acard[ccard].spot].score;
   }
   
   if (score > 21)
      return scoreBust;
   while (score + 10 <= 21 && cAce > 0)
   {
      score += 10;
      -cAce;
      ++*pcAce;
   }

   return score;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »
PUBG Mobile teams up with global phenome...
Since launching in 2019, SpyxFamily has exploded to damn near catastrophic popularity, so it was only a matter of time before a mobile game snapped up a collaboration. Enter PUBG Mobile. Until May 12th, players will be able to collect a host of... | Read more »
Embark into the frozen tundra of certain...
Chucklefish, developers of hit action-adventure sandbox game Starbound and owner of one of the cutest logos in gaming, has released their roguelike deck-builder Wildfrost. Created alongside developers Gaziter and Deadpan Games, Wildfrost will... | Read more »
MoreFun Studios has announced Season 4,...
Tension has escalated in the ever-volatile world of Arena Breakout, as your old pal Randall Fisher and bosses Fred and Perrero continue to lob insults and explosives at each other, bringing us to a new phase of warfare. Season 4, Into The Fog of... | Read more »
Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »
Marvel Future Fight celebrates nine year...
Announced alongside an advertising image I can only assume was aimed squarely at myself with the prominent Deadpool and Odin featured on it, Netmarble has revealed their celebrations for the 9th anniversary of Marvel Future Fight. The Countdown... | Read more »
HoYoFair 2024 prepares to showcase over...
To say Genshin Impact took the world by storm when it was released would be an understatement. However, I think the most surprising part of the launch was just how much further it went than gaming. There have been concerts, art shows, massive... | Read more »

Price Scanner via MacPrices.net

Amazon is offering a $100 discount on every M...
Amazon is offering a $100 instant discount on each configuration of Apple’s new 13″ M3 MacBook Air, in Midnight, this weekend. These are the lowest prices currently available for new 13″ M3 MacBook... Read more
You can save $300-$480 on a 14-inch M3 Pro/Ma...
Apple has 14″ M3 Pro and M3 Max MacBook Pros in stock today and available, Certified Refurbished, starting at $1699 and ranging up to $480 off MSRP. Each model features a new outer case, shipping is... Read more
24-inch M1 iMacs available at Apple starting...
Apple has clearance M1 iMacs available in their Certified Refurbished store starting at $1049 and ranging up to $300 off original MSRP. Each iMac is in like-new condition and comes with Apple’s... Read more
Walmart continues to offer $699 13-inch M1 Ma...
Walmart continues to offer new Apple 13″ M1 MacBook Airs (8GB RAM, 256GB SSD) online for $699, $300 off original MSRP, in Space Gray, Silver, and Gold colors. These are new MacBook for sale by... Read more
B&H has 13-inch M2 MacBook Airs with 16GB...
B&H Photo has 13″ MacBook Airs with M2 CPUs, 16GB of memory, and 256GB of storage in stock and on sale for $1099, $100 off Apple’s MSRP for this configuration. Free 1-2 day delivery is available... Read more
14-inch M3 MacBook Pro with 16GB of RAM avail...
Apple has the 14″ M3 MacBook Pro with 16GB of RAM and 1TB of storage, Certified Refurbished, available for $300 off MSRP. Each MacBook Pro features a new outer case, shipping is free, and an Apple 1-... Read more
Apple M2 Mac minis on sale for up to $150 off...
Amazon has Apple’s M2-powered Mac minis in stock and on sale for $100-$150 off MSRP, each including free delivery: – Mac mini M2/256GB SSD: $499, save $100 – Mac mini M2/512GB SSD: $699, save $100 –... Read more
Amazon is offering a $200 discount on 14-inch...
Amazon has 14-inch M3 MacBook Pros in stock and on sale for $200 off MSRP. Shipping is free. Note that Amazon’s stock tends to come and go: – 14″ M3 MacBook Pro (8GB RAM/512GB SSD): $1399.99, $200... Read more
Sunday Sale: 13-inch M3 MacBook Air for $999,...
Several Apple retailers have the new 13″ MacBook Air with an M3 CPU in stock and on sale today for only $999 in Midnight. These are the lowest prices currently available for new 13″ M3 MacBook Airs... Read more
Multiple Apple retailers are offering 13-inch...
Several Apple retailers have 13″ MacBook Airs with M2 CPUs in stock and on sale this weekend starting at only $849 in Space Gray, Silver, Starlight, and Midnight colors. These are the lowest prices... Read more

Jobs Board

Relationship Banker - *Apple* Valley Financ...
Relationship Banker - Apple Valley Financial Center APPLE VALLEY, Minnesota **Job Description:** At Bank of America, we are guided by a common purpose to help Read more
IN6728 Optometrist- *Apple* Valley, CA- Tar...
Date: Apr 9, 2024 Brand: Target Optical Location: Apple Valley, CA, US, 92308 **Requisition ID:** 824398 At Target Optical, we help people see and look great - and Read more
Medical Assistant - Orthopedics *Apple* Hil...
Medical Assistant - Orthopedics Apple Hill York Location: WellSpan Medical Group, York, PA Schedule: Full Time Sign-On Bonus Eligible Remote/Hybrid Regular Apply Now Read more
*Apple* Systems Administrator - JAMF - Activ...
…**Public Trust/Other Required:** None **Job Family:** Systems Administration **Skills:** Apple Platforms,Computer Servers,Jamf Pro **Experience:** 3 + years of Read more
Liquor Stock Clerk - S. *Apple* St. - Idaho...
Liquor Stock Clerk - S. Apple St. Boise Posting Begin Date: 2023/10/10 Posting End Date: 2024/10/14 Category: Retail Sub Category: Customer Service Work Type: Part Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.