TweetFollow Us on Twitter

Nov 95 Challenge
Volume Number:11
Issue Number:11
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Bob Boonstra, Westford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Enclosing Bounds

The Challenge this month is based on a suggestion by Mike Scanlin, who remains a fan of the column. (We’re still waiting for Mike’s first Challenge entry, however.) The problem is to write a routine that will return a rectangle enclosing all non-white pixels in a selected area of an image. This code might be useful in a drawing or painting program, where the user would be allowed to select a subset of the image by clicking and dragging, and the software would select all of the elements of the image contained within that selection. The prototype of the code you will write is:

void EnclosingBounds(
 PixMapHandle pm,  /* handle to PixMap containing image */
 Rect selection, /* subset of image to enclose */
 Rect *enclosingRect /* enclosing rect return value */
);

Your code should examine all of the pixels within the selection rectangle of the PixMap and return the smallest rectangle containing all of the non-white pixels. Pixels outside the selection rectangle should be ignored. The bounds rectangle of the PixMap will be no larger than 2048 pixels in each dimension, the baseAddr pointer will be longword aligned, and rowBytes will be a multiple of 4. You should deal with pixelSize values of 1, 8, or 32, with values of 8 and 32 being weighted most heavily in measuring performance. For PixMaps with indexed pixels (cmpCount==1), the color table will contain white as the first table entry (as all good color tables are supposed to). For PixMaps with direct pixels, the unused (alpha) bits of each pixel will be zero.

You may use either the Metrowerks or the Symantec compilers for this native PowerPC Challenge. If you have any questions, or would like some test data for your code, please send me e-mail at one of the Programmer’s Challenge addresses, or directly to boonstra@ultranet.com.

Two Months Ago Winner

Congratulations to Eric Lengyel (Blacksburg, VA) for submitting the fastest and smallest entry to the Reversible Scrambling Algorithm Challenge. Despite an unfortunate delay in publication of the magazine that left participants with less time than usual to complete the Challenge, three of the four entries I received by the extended deadline worked correctly, at least in part.

You might recall that the Challenge was to write code that would raise a large integer message to a power and compute the remainder modulo another large integer. The name of the Challenge comes from the fact that this technique is reversible, given properly chosen integers. Eric is a graduate student in Mathematics at Virginia Tech, and he took advantage of a highly optimized multiple precision integer arithmetic library that he had written as part of a number theory project involving the factorization of very large numbers.

Each of the working entries converted the BigNum representation provided in the problem into one that right-justified numbers into a fixed-length data structure. While this imposes a restriction on the maximum size integer that the code can handle, this assumption was permitted by the problem statement. In Eric’s code, the restriction is controlled by a single #define statement.

Eric uses a binary exponentiation algorithm to raise the message to the specified power, and takes advantage of facts from number theory that allow the remainder to be computed at each step of the exponentiation. The time to perform the exponentiation is therefore proportional to the logarithm of the exponent. Eric’s multiplication and division routines use the 68020’s capability to compute the 64-bit product of two longwords and to divide a 64-bit dividend by a longword. The multiplication, division, exponentiation, and compare routines in Eric’s code are general purpose and could be used in any 68K application that needs large integers.

Honorable mention goes to Ernst Munter, who submitted an entry in pure C that was actually the fastest code for the short modulus test cases. Unfortunately, his entry did not produce correct results for the longer moduli.

Here are the times and code sizes for the entries that worked correctly (or partially correctly). Execution time is presented for two specific test cases, with modulus lengths of 22 and 88 bytes, respectively, as well as the total time for all of the test cases I ran. Cases that produced incorrect results are indicated with an asterisk. Numbers in parens after a person’s name indicate that person’s cumulative point total for all previous Challenges, not including this one.

Name time1 time2 Total time code data

(22) (88)
bytes bytes

Eric Lengyel 47 463 2083 1190 0

Xan Gregg (51) 35 967 3175 1558 0

Ernst Munter (C entry) (90) 17 * * 4266 11788

Top 20 Contestants of All Time

Here are the Top 20 Contestants for the Programmer’s Challenges to date. The numbers below include points awarded for this month’s entrants. (Note: ties are listed alphabetically by last name - there are more than 20 people listed this month because of ties.)

Rank Name Points

1. [Name deleted] 176

2. Munter, Ernst 90

3. Karsh, Bill 78

4. Stenger, Allen 65

5. Gregg, Xan 61

6. Larsson, Gustav 60

7. Riha, Stepan 51

8. Goebel, James 49

9. Nepsund, Ronald 47

10. Cutts, Kevin 46

11. Mallett, Jeff 44

12. Kasparian, Raffi 42

13. Vineyard, Jeremy 42

14. Darrah, Dave 31

15. Landry, Larry 29

16. Elwertowski, Tom 24

17. Lee, Johnny 22

18. Noll, Robert 22

19. Anderson, Troy 20

20. Beith, Gary 20

21. Burgoyne, Nick 20

22. Galway, Will 20

23. Israelson, Steve 20

24. Landweber, Greg 20

25. Lengyel, Eric 20

26. Pinkerton, Tom 20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points

2nd place 10 points

3rd place 7 points

4th place 4 points

5th place 2 points

finding bug 2 points

suggesting Challenge 2 points

Here is Eric’s winning solution:

PowerAndRemainder.c

Copyright © 1995 Eric Lengyel
/*
I call my fixed length numbers “BigFixed” and translate from BigNum’s to BigFixed’s in the PowerAndRemainder 
routine.  These are the assembly language routines which are the guts of my program:

(1) PowerMod - raises a number to a power and reduces it by a modulus.  It uses a fast binary exponentiation 
algorithm, reducing by the modulus at each step.
(2) Multiply - multiplies 2 BigNum’s together.
(3) MultQ - mutliplies a BigNum by a long int.
(4) Divide - divides one BigNum by another and supplies the quotient and remainder.
(5) Compare - determines the ordering of 2 BigNum’s.

Some of the loops have been expanded to make more efficient use of the instruction cache.
*/

#define NumSize 72

typedef struct BigNum
{
   short           numDig;
   unsigned char   *dig;
} BigNum;

typedef struct BigFixed
{
   unsigned char   dig[NumSize*4];
} BigFixed;

/* We need 72 longs because the division routine needs the most significant longword to be zero and the 
speed optimization requires that NumSize be a multiple of four. */

void PowerAndRemainder(BigNum *msg, BigNum *exp, BigNum *n,
   BigNum *res);
void PowerMod(BigFixed *msg, BigFixed *exp, BigFixed *n,
   BigFixed *res);
void Multiply(BigFixed *src1, BigFixed *src2, BigFixed *dst);
void MultQ(BigFixed *src1, long src2, BigFixed *dst);
void Divide(BigFixed *end, BigFixed *sor, BigFixed *dst);
short Compare(BigFixed *src1, BigFixed *src2);

PowerAndRemainder

void PowerAndRemainder(BigNum *msg, BigNum *exp, BigNum *n,
   BigNum *res)
{
   short      a, b, numDigits;
   BigFixed   msg0, exp0, n0, res0;
   
   for (a = 0; a < NumSize*4; a++)
   {
      b = NumSize*4 - msg->numDig;
      if (a < b) msg0.dig[a] = 0;
      else msg0.dig[a] = msg->dig[a - b];
      b = NumSize*4 - exp->numDig;
      if (a < b) exp0.dig[a] = 0;
      else exp0.dig[a] = exp->dig[a - b];
      b = NumSize*4 - n->numDig;
      if (a < b) n0.dig[a] = 0;
      else n0.dig[a] = n->dig[a - b];
   }
   PowerMod(&msg0, &exp0, &n0, &res0);
   a = 0;
   while (res0.dig[a] == 0) a++;
   numDigits = res->numDig = NumSize*4 - a;
   for (b = 0; b < numDigits; b++)
      res->dig[b] = res0.dig[a++];
}

PowerMod

void PowerMod(BigFixed *msg, BigFixed *exp, BigFixed *n,
   BigFixed *res)
{
   BigFixed   acc, scrap;

   asm
   {
   LEA      acc, A0            ;   Start with one in
   MOVEQ    #NumSize/4-2, D0   ;   accumulator
1} ; Test a bit in current
                               ;   longword of exponent
   BEQ      @1                 ;   If zero, skip multiply
   PEA      acc                ;   Multiply accumulator
   PEA      acc                ;   by base
   MOVE.L   msg, -(A7)
   JSR      Multiply
   ADDA.W   #12, A7
   MOVE.L   n, -(A7)           ;   Compare accumulator
   PEA      acc                ;   to modulus
   JSR      Compare
   ADDQ.W   #8, A7
   TST.B    D0
   BMI      @1                 ;   If it’s less, skip
                               ;   reduction
   PEA      scrap              ;   Reduce modulo “n”
   MOVE.L   n, -(A7)
   PEA      acc
   JSR      Divide
   ADDA.W   #12, A7
Multiply

/* Multiply src1 by src2 and put product in dst */

void Multiply(BigFixed *src1, BigFixed *src2, BigFixed *dst)
{
   short      topStop, botStop;
   BigFixed   acc, line;
   
   asm
   {
   MOVEM.L  D0-D7/A0-A4, -(A7)
   LEA      acc, A0            ;   Clear accumulator
   MOVEQ    #NumSize/4-1, D0
D5       ;   Do 64-bit multiply
   ADD.L    D2, D5             ;   Add carry to low
                               ;   longword of product
   CLR.L    D2                 ;   Use D2 as dummy to
                               ;   extend carry
   ADDX.L   D2, D6             ;   Add zero to high
                               ;   longword with carry
   MOVE.L   D6, D2             ;   Anything in high
                               ;   longword gets carried
   MOVE.L   D5, 00(A2, D3.W*4) ;   Store low longword in
                               ;   partial product
   SUBQ.W   #1, D3             ;   Loop through all
   CMP.W    topStop, D3        ;   longwords in top number
   BGE      @1
   MOVEA.L  A2, A0             ;   Now add partial product
                               ;   to accumulator
   MOVE.L   D4, D0             ;   Calculate correct
                               ;   position in product
   LEA      acc, A1            ;   Get accumulator’s addr
   ADDQ.W   #1, D0
   ADDA.W   #NumSize * 4, A0
   LSL.W    #2, D0
   ADDA.W   D0, A1
   MOVE.W   D4, D1
   MOVE.L   -(A1), D0          ;   Get longword of product
   SUBQ     #1, D1
   ADD.L    -(A0), D0          ;   Add longword of
   MOVE.L   D0, (A1)           ;   partial product
   TST.W    D1                 ;   If no more longwords,
   BMI      @2                 ;   then branch
MultQ
/* Multiply src1 by src2 and put product in dst */

void MultQ(BigFixed *src1, long src2, BigFixed *dst)
{
   BigFixed   pro;
   
   asm
   {
   MOVEM.L  D0-D7/A0/A1, -(A7)
   LEA      pro, A0            ;   Clear product
   MOVEQ    #NumSize/4-1, D0
D4          ;   Do 64-bit multiply
                               ;   by bottom number
   ADD.L    D2, D4             ;   Add carry
   CLR.L    D2                 ;   Use D2 as dummy to
                               ;   extend carry
   ADDX.L   D2, D5             ;   Add zero with carry
   MOVE.L   D5, D2             ;   High longword
                               ;   becomes carry
   MOVE.L   D4, 00(A1, D0.W*4) ;   Put partial product
                               ;   into result
   SUBQ.W   #1, D0             ;   Loop through all
   CMP.W    D1, D0             ;   longwords in top #
   BGE      @1
Divide

/* Divide end (dividend) by sor (divisor) and put quotient in dst.  Remainder will end
    up in end */

void Divide(BigFixed *end, BigFixed *sor, BigFixed *dst)
{
   long      pq;
   BigFixed  quo, line;
   
   asm
   {
   MOVEM.L  D0-D7/A0-A4, -(A7)
   LEA      quo, A0            ;   Clear quotient
   MOVEQ    #NumSize/4-1, D0
D4          ;   Do 64-bit division
Compare

/* Compare src1 and src2.  Returns 1 if src1 > src2, 0 if they’re equal, and -1 if src1 < 
    rc2. */

short Compare(BigFixed *src1, BigFixed *src2)
{
   asm
   {
   MOVEM.L  D1/D2/A0/A1, -(A7)
   MOVEA.L  src1, A0           ;   Get src1’s address
   MOVEA.L  src2, A1           ;   Get src2’s address
   MOVEQ    #1, D0             ;   Start with +1
   MOVE.L   (A0)+, D2
   CMP.L    (A1)+, D2          ;   Compare 1st longwords
   BLT      @1                 ;   If src1 less, branch
   BNE      @2                 ;   If !=, src1 must
   MOVE.L   (A0)+, D2          ;   be greater
   CMP.L    (A1)+, D2          ;   Cmp 3 more longwords
   BCS      @1                 ;   (Unsigned)
   BNE      @2
   MOVE.L   (A0)+, D2
   CMP.L    (A1)+, D2
   BCS      @1
   BNE      @2
   MOVE.L   (A0)+, D2
   CMP.L    (A1)+, D2
   BCS      @1
   BNE      @2
   MOVEQ    #NumSize/4-2, D1   ;   Number of longwords
                               ;   remaining / 4

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »
PUBG Mobile teams up with global phenome...
Since launching in 2019, SpyxFamily has exploded to damn near catastrophic popularity, so it was only a matter of time before a mobile game snapped up a collaboration. Enter PUBG Mobile. Until May 12th, players will be able to collect a host of... | Read more »
Embark into the frozen tundra of certain...
Chucklefish, developers of hit action-adventure sandbox game Starbound and owner of one of the cutest logos in gaming, has released their roguelike deck-builder Wildfrost. Created alongside developers Gaziter and Deadpan Games, Wildfrost will... | Read more »
MoreFun Studios has announced Season 4,...
Tension has escalated in the ever-volatile world of Arena Breakout, as your old pal Randall Fisher and bosses Fred and Perrero continue to lob insults and explosives at each other, bringing us to a new phase of warfare. Season 4, Into The Fog of... | Read more »
Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »
Marvel Future Fight celebrates nine year...
Announced alongside an advertising image I can only assume was aimed squarely at myself with the prominent Deadpool and Odin featured on it, Netmarble has revealed their celebrations for the 9th anniversary of Marvel Future Fight. The Countdown... | Read more »
HoYoFair 2024 prepares to showcase over...
To say Genshin Impact took the world by storm when it was released would be an understatement. However, I think the most surprising part of the launch was just how much further it went than gaming. There have been concerts, art shows, massive... | Read more »

Price Scanner via MacPrices.net

Apple Watch Ultra 2 now available at Apple fo...
Apple has, for the first time, begun offering Certified Refurbished Apple Watch Ultra 2 models in their online store for $679, or $120 off MSRP. Each Watch includes Apple’s standard one-year warranty... Read more
AT&T has the iPhone 14 on sale for only $...
AT&T has the 128GB Apple iPhone 14 available for only $5.99 per month for new and existing customers when you activate unlimited service and use AT&T’s 36 month installment plan. The fine... Read more
Amazon is offering a $100 discount on every M...
Amazon is offering a $100 instant discount on each configuration of Apple’s new 13″ M3 MacBook Air, in Midnight, this weekend. These are the lowest prices currently available for new 13″ M3 MacBook... Read more
You can save $300-$480 on a 14-inch M3 Pro/Ma...
Apple has 14″ M3 Pro and M3 Max MacBook Pros in stock today and available, Certified Refurbished, starting at $1699 and ranging up to $480 off MSRP. Each model features a new outer case, shipping is... Read more
24-inch M1 iMacs available at Apple starting...
Apple has clearance M1 iMacs available in their Certified Refurbished store starting at $1049 and ranging up to $300 off original MSRP. Each iMac is in like-new condition and comes with Apple’s... Read more
Walmart continues to offer $699 13-inch M1 Ma...
Walmart continues to offer new Apple 13″ M1 MacBook Airs (8GB RAM, 256GB SSD) online for $699, $300 off original MSRP, in Space Gray, Silver, and Gold colors. These are new MacBook for sale by... Read more
B&H has 13-inch M2 MacBook Airs with 16GB...
B&H Photo has 13″ MacBook Airs with M2 CPUs, 16GB of memory, and 256GB of storage in stock and on sale for $1099, $100 off Apple’s MSRP for this configuration. Free 1-2 day delivery is available... Read more
14-inch M3 MacBook Pro with 16GB of RAM avail...
Apple has the 14″ M3 MacBook Pro with 16GB of RAM and 1TB of storage, Certified Refurbished, available for $300 off MSRP. Each MacBook Pro features a new outer case, shipping is free, and an Apple 1-... Read more
Apple M2 Mac minis on sale for up to $150 off...
Amazon has Apple’s M2-powered Mac minis in stock and on sale for $100-$150 off MSRP, each including free delivery: – Mac mini M2/256GB SSD: $499, save $100 – Mac mini M2/512GB SSD: $699, save $100 –... Read more
Amazon is offering a $200 discount on 14-inch...
Amazon has 14-inch M3 MacBook Pros in stock and on sale for $200 off MSRP. Shipping is free. Note that Amazon’s stock tends to come and go: – 14″ M3 MacBook Pro (8GB RAM/512GB SSD): $1399.99, $200... Read more

Jobs Board

*Apple* Systems Administrator - JAMF - Syste...
Title: Apple Systems Administrator - JAMF ALTA is supporting a direct hire opportunity. This position is 100% Onsite for initial 3-6 months and then remote 1-2 Read more
Relationship Banker - *Apple* Valley Financ...
Relationship Banker - Apple Valley Financial Center APPLE VALLEY, Minnesota **Job Description:** At Bank of America, we are guided by a common purpose to help Read more
IN6728 Optometrist- *Apple* Valley, CA- Tar...
Date: Apr 9, 2024 Brand: Target Optical Location: Apple Valley, CA, US, 92308 **Requisition ID:** 824398 At Target Optical, we help people see and look great - and Read more
Medical Assistant - Orthopedics *Apple* Hil...
Medical Assistant - Orthopedics Apple Hill York Location: WellSpan Medical Group, York, PA Schedule: Full Time Sign-On Bonus Eligible Remote/Hybrid Regular Apply Now Read more
*Apple* Systems Administrator - JAMF - Activ...
…**Public Trust/Other Required:** None **Job Family:** Systems Administration **Skills:** Apple Platforms,Computer Servers,Jamf Pro **Experience:** 3 + years of Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.